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ABSTRACT
Distance estimators are needed as input for popular dis-
tance based phylogenetic reconstruction methods such as
UPGMA and neighbour-joining. Computation of these takes
O(n2l) time for n sequences with length l which is usually
fast compared to reconstructing a phylogenetic tree of n
taxa. However, with the introduction of fast search heuris-
tics for distance based phylogenetic reconstruction meth-
ods, the computation of distance estimators has become a
bottleneck especially for long sequences. Elias et al. have
shown how distance estimators can be computed efficiently
from unaligned nucleotide sequences using vectorisation of
code. In this paper we extend their method to allow efficient
computation of distance estimators from aligned nucleotide
and amino acid sequences using vectorisation of code and
parallelisation on both CPUs and GPUs. Experiments are
presented which show an increase in performance of up to
36x and 8x relative to the naive approach when computing
distance estimators from nucleotides and amino acids align-
ments respectively.

Categories and Subject Descriptors
I.m [Computing Methodologies]: Miscellaneous;
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics

General Terms
Algorithms

Keywords
Phylogenetic distance estimator, Phylogenetic inference, Par-
allelization, Vectorization, GPU.

1. INTRODUCTION
Distance based methods are widely used for phylogenetic

tree reconstruction and are in general computationally effi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 21-MAR-2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

cient. These methods use estimates of the pairwise evolu-
tionary distance between a set of sequences to reconstruct
trees. Such distance estimates are normally based on the
number of mutational events between sequences and count-
ing these is the most time consuming step in computing
most distance estimators. Computing the number of muta-
tional events between each pair of n sequences takes time
O(n2l) where l is the length of the sequences. Compared to
the O(n3) running time of the two most popular distance
based phylogenetic reconstruction methods, UPGMA [15]
and neighbour-joining [16], this is fast and can be done
with a naive implementation. However, by using fast search
heuristics such as FastPair [5] and RapidNJ [17] the running
times of UPGMA and neighbour-joining are significantly
reduced hereby making computation of distance estimators
a bottleneck even when l is relatively small.

Elias et al. [4] have shown how the number of mutational
events between two nucleotide sequences can be computed
efficiently using the SSE2 instruction set combined with a
divide and conquer algorithm for counting the number of
1-bits in a vector. In this paper we extend this method
to work on multiple aligments of nucleotides and we also
present a new method for computing distance estimators
from amino acid sequences and alignments of these.

2. BACKGROUND

2.1 Computing the evolutionary distance
between sequences

The evolutionary distance between two nucleotide or amino
acid sequences can be computed as the observed number of
substitutions, i.e. number of substitutions needed to trans-
form one sequence into the other. However, this is usually
an underestimate as multiple substitutions could have oc-
curred at any site in the two sequences. Sequence evolution
models such as the popular Kimura’s two-parameter (K2P)
model [12] correct for these hidden substitutions based on
the observed number of substitutions.

The K2P model takes into account that transitions (A↔T
and C↔G) and transversions (all other substitutions) occur
at different rates. The distance, d, between two nucleotide
sequences can be computed under the K2P model as

d =
1
2
ln

(
1

1− 2P −Q

)
+

1
4
ln

(
1

1− 2Q

)
(1)

where P and Q are the frequency of transitions and transver-
sions respectively. With the number of transitions and trans-
versions it is also possible to use both the Jukes-Cantor [10]
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Table 1: Nucleotide SIMD operations.

r ← u⊕ v
tv ← (r % 1) & m

ts ← (r & m) & (∼ tv)

and Tamura-Nei [11] models for estimating the evolutionary
distance.
In case of amino acid sequences, empirical score matrices

such as PAM or BLOSUM matrices are often used to esti-
mate the distance between sequences. PAM distances can
be approximated using Kimura’s distance [13] as

d = −ln

(
1− p− 1

5
p2
)

(2)

where p is the proportion of substitutions between two amino
acid sequences. Compared to distance estimates computed
with score matrices, the Kimura distance is more rough as
all types of substitutions are treated equal. Even so, the
Kimura distance is used in phylogenetic software to provide
fast distance estimates.
Equations 1 and 2 are computationally efficient once the

number of substitutions has been obtained. A naive ap-
proach for counting substitutions is to simply compare each
pair of nucleotides or amino acids one by one as ASCII char-
acters. By taking advantage of modern processors Single
Instruction Multiple Data (SIMD) capabilities, 2x128 bits
or 16 characters can be compared in each iteration which
significantly reduces the time required to count the number
of substitutions between sequences [4].

2.2 Counting transition and transversions
using SIMD instructions

In [4] SIMD instructions, available in the SSE2 instruc-
tion set, are used to count the number of transitions and
transversions between nucleotide sequences which in com-
bination with a compact encoding of nucleotides allows up
to 64 nucleotides to be processed simultaneously. The com-
plexity of the algorithm remains O(n2l) but the algorithm
has a significantly better performance in practice compared
to the naive approach.
Each nucleotide is encoded using a 2-bit encoding where

A = 00; C = 11; G = 01; T = 10. Given two 128-bit
vectors, u and v, with encoded nucleotides, the number of
transitions and transversions are computed using the SIMD
instructions in Table 1 as follows. The exclusive or (XOR)
of v and u is computed and stored in a 128-bit vector r.
Each 2-bit block of r now contains one of the following
bit patterns: <00> indicating that no substitution has oc-
curred, <01> indicating that a transition has occurred or
either <10> or <11> both indicating that a transversion
has occurred. A 128-bit vector tv is computed by performing
a logical bit-wise right-shift of r by one bit and computing
the bit-wise AND with a 128-bit mask, m, containing the
bit-pattern <010101...>. The bit-vector tv now contains
a 1-bit for each transversion that has occurred. Another
128-bit vector, ts, is computed as the bit-wise AND of r
and m followed by the bitwise AND with the negation of
tv. As a result, ts contains a 1-bit for each transition that
has occurred. The number of transitions and transvertions
between the encoded nucleotides in u and v can now be
computed as the number of 1-bits in ts and tv respectively.

Table 2: SIMD operations for handling gaps

g ← gv & gu
tv ← tv & g
ts ← ts & g

Counting the number of 1-bits in a bit-vector can be done
by counting them one by one. This is, however, inefficient,
but the SSE2 instruction set does not provide an immediate
way of doing this more efficiently1.

A divide and conquer algorithm for counting the num-
ber of 1-bits in ts and tv efficiently is described in [4] and
summarised in the following. Each 2-bit block in ts and tv
contains either 00 or 01 corresponding to the integer values
0 and 1. Up to three of these 128-bit vectors can be added
with a SIMD add operation without causing an overflow
in the 2-bit blocks. Using a series of SIMD instructions,
neighbouring 2-bit blocks can be merged into a 4-bit block
containing the sum of the merged blocks. The result is a
128-bit vector containing 32 4-bit blocks each representing
an integer ≤6. Now the process can be repeated by adding
vectors until we risk overflowing a 4-bit integer in which
case neighbouring 4-bit blocks are merged into 8-bit blocks.
When only one vector remains or the block size reaches
32 bits and there is a risk of overflowing, the integers are
extracted and added using scalar instructions.

3. METHODS

3.1 Computing distance estimators from mul-
tiple alignments of nucleotide sequences

The method presented in [4] does not handle gaps and
is therefore not suited for multiple alignments of nucleotide
sequences. To enable computation of distance estimators
from multiple alignments, the encoding of nucleotides need
to be extended with at least one bit for representing gaps.
We use a 4-bit encoding which results in a cleaner and faster
code compared to a 3-bit encoding. Each nucleotide in the
alignment is encoded using the 2-bit encoding introduced
in Sec. 2.2 and gaps are encoded as Adenine, i.e. A = 00
(but could be encoded as any one of the four nucleotides).
The remaining two bits are used to create a gap-filter for
each sequence. The purpose of the gap-filter is to ignore
substitutions between two sequences where one or both sites
contain a gap which is a common strategy for handling gaps.
For each sequence a gap-filter is created as a number of
128-bit vectors where each 2-bit block is set to <00> if the
sequence contains a gap at the corresponding site and <01>
otherwise. Given two 128-bit vectors of encoded nucleotides,
v and u, we compute ts and tv using the operations in
Table 1. Let gv and gu be two 128-bit vectors containing the
sections of gap-filters corresponding to v and u respectively.
The operations in Table 2 can now be used to zero the
number of transitions and transvertions at sites containing
gaps in ts and tv.

Using the divide and conquer method described in Sec. 2.2,
the number of transitions and transvertions can be obtained

1Instructions for counting the number of 1-bits in a vector is
available in the SSE4.2 instruction set. However, the latency
of these instructions are high which leads to a decrease in
performance.
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Figure 1: Running times on simulated datasets
containing 500 nucleotide sequences.

Table 3: Amino acid SIMD operations.

r ← u == v
r ← (∼ r) & m8

g ← ((u == mg) ‖ (v == mg)) & m8

r ← (∼ g) & r

by counting the number of 1-bits in ts and tv respectively.
To compute a distance estimate of two aligned sequences, the
length of the two sequences where columns containing gaps
have been removed is also needed. The length is obtained
by simply counting the number of 1-bits in the g-vectors.

3.2 Computing distance estimators from
amino acid sequences

Computing the Kimura distance between two amino acid
sequences requires the number of substitutions between these
sequences and the length of the sequences without gaps.
As with nucleotide sequences, this can be done efficiently
using the SSE2 instruction set as follows. Each amino acid
is encoded using the standard one-letter code in 8-bit ASCII
format thus allowing 16 amino acids to be processed simul-
taneously using the SSE2 instruction set. Gaps are encoded
as the ’-’ character but any character not used by the amino
acids is usable. Given two 128-bit vectors of encoded amino
acids, v and u, the number of mutations can be counted
using the SIMD operations in Table 3.
The bit-vectors u and v are compared using the pcmpeqb

instruction from the SSE2 instruction set which compares
each byte in u and v for equality. The return value of the
comparison is a new 128-bit vector, r, where all bits in a byte
are set to 1 if the two bytes were equal, and 0 otherwise.
Next, the bitwise negation of r is computed and used to
compute the bitwise AND with a mask, m8, where each byte
contains the bit-pattern<00000001>. r now contains a 1-bit
for each substitution in the two vectors but possibly also a
1-bit for positions with gaps. To ignore positions with gaps,
each byte in v and u are compared with a mask, mg, where
each byte has the bit-pattern <00101101> corresponding
to the ASCII code for ’-’. The result of the comparison
is then combined using a bitwise OR and, subsequently, a
bitwise AND with the m8 mask. The bytes in g now contain
<00000001> if the corresponding position in either v or u
contained a gap and <00000000> otherwise. The last step
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Figure 2: Running times on simulated datasets
containing 500 amino acid sequences.

is to zero all positions in r which contained a gap using g.
The number of mutations between the two substrings in v
and u and the length of the two sequences without gaps is
obtained by counting the number of 1-bits in all r and g
respectively.

3.3 Computation of distance estimators using
GPUs

General Purpose Graphics Processing Units (GPU) are
available in most modern desktop computers and often have
significantly higher peak performance compared to CPUs.
However, problems must be massively parallelisable to take
advantage of GPUs which often contains more than 100
cores. When counting the number of substitutions between
n sequences, each pair of sites can be processed indepen-
dently making this problem well suited for GPUs.

We have used NVIDIAs Compute Unified Device Archi-
tecture (CUDA) SDK to implement the methods in Sec. 3.1
and 3.2. CUDA uses a multi-threading scheme to parallelise
workloads where threads are organised in blocks and blocks
are organised in grids. Using this organisation of threads
developers can define parallelisation schemes for a specific
problem. Several approaches for parallelising the compu-
tation of distance estimators were investigated where the
following approach showed the best overall performance.

Given n sequences a grid containing n × (n − 1) blocks
is used to compute distance between all pairs of sequences.
Each block is assigned to a pair of sequences, (i, j), and
contains 128 threads where each thread is used to com-
pute the number of substitutions between *l/128+ sites in
sequence i and j. Each thread store intermediate results in
shared memory. To obtain the total number of substitutions
we use parallel reduction [8] to sum all intermediate results
efficiently using all threads in a block and shared memory.

CUDA does not make use of SIMD instructions directly
but as GPU cores are essentially vector processors many
SSE2 instructions can be implemented using a number of
threads executing the same sequence of instructions on vec-
tors of data. In case of nucleotide sequences, the 128-bit
SIMD operations in Table 1 and 2 can be implemented
using four threads executing the same scalar operation on
32-bit of data. It is, however, not possible to implement the
pcmpeqb instruction used in Table 3 with a single operation.
Consequently, each pair of amino acids must be compared
one at a time.
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Figure 3: Running times on simulated datasets
containing 5000 nucleotide sequences.
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Figure 4: Running times on simulated datasets
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4. RESULTS AND DISCUSSION
To assess the performance of the methods described in

Sec. 3 they were implemented in a tool using C++ and
CUDA 3.0. We will refer to our implementations as vec-
torised for the SSE2 based solution and GPU for the CUDA
based solution. An optimised version of the naive approach,
referred to as naive, was also implemented. Both the vec-
torised and naive implementation were parallelised using
POSIX threads. Source code for all implementations is avail-
able at http://birc.au.dk/research/software/rapidnj/ (as a
part of the RapidNJ tool).
The running times of the different methods were com-

pared against those of three popular tools. For nucleotide
sequences we compared with dnadist from the Phylip pack-
age [6] and distmat from the EMBOSS package [3]. For
amino acid sequences protdist from the Phylip package and
QuickTree [9] were used. The K2P model (Eq. 1) or the
Kimura distance (Eq. 2) were employed by all tools to com-
pute distances for nucleotide sequences and amino acid se-
quences respectively. All running times include the time
used for loading data, encoding sequences where applicable
and outputting the result. The experiments were performed
on an 2.66 GHz Intel Core 2 quad (Q9450) CPU with 4GB
RAM running Ubuntu 9.04 equipped with a Geforce 8800GT
GPU.

4.1 Experiments on simulated data
In Fig. 1 and 2 the running times on alignments containing

500 simulated (random nucleotides and amino acids) se-
quences are shown. The unparallelised vectorised implemen-
tation is up 35x faster on nucleotide alignments compared to
our own naive implementation. On amino acid alignments
the vectorized implementation can only process 16 sites con-
currently compared to 64 on nucleotide alignments which
results in a smaller speedup of 8x compared to our naive
implementation. On larger alignments with 5,000 sequences,
the unparallelised vectorized implementations also achieve
significant speedups of up to 36x on nucleotide alignments
and 8x on amino acid alignments as shown in Fig. 3 and 4.

Neither of the three reference tools (Phylip, EMBOSS,
QuickTree) utilise the parallel capabilities of modern proces-
sors which makes a direct comparison to the massive parallel
GPU implementation infeasible. However, as our unparal-
lelised naive implementation has better performance than
the three reference tools, we use the parallelised version of
this implementation to assess the performance of the parallel
vectorised implementation and the GPU implementation.
On short alignments, the naive implementation does not
benefit significantly from parallelisation whereas a near 4x
speedup is achieved on longer alignments using 4 cores. Still,
both the unparallelised and parallelised vectorised imple-
mentations are significantly faster than the parallelised naive
implementation. The performance of the GPU implementa-
tion and the parallelised vectorised implementation is similar
even though the GPUs theoretical peak performance exceeds
that of the CPU by more than a factor 5. As shown in [18], it
is often hard to fully utilise all clock cycles in GPUs because
of e.g. small cache sizes and poor performance of scalar code.
The cache size is especially important here as each sequence
is involved in O(n) comparisons. The limited amount of
cache available in the GPU only allows small chunks of
sequences to be stored and to take advantage of cached data
(in shared memory) the number of thread-blocks has to be
reduced to a point where the GPU becomes underutilised for
most reasonable data set sizes. Experiments with caching
sequence data in shared memory and the use of texture
memory did not give rise to better performance.

4.2 Experiments on biological data
The size of the simulated alignments used in Sec. 4.1

were chosen to represent the size of real biological align-
ments which are currently available in various databases.
Here we compare running times of the vectorised implemen-
tation against those of the naive implementation on large
alignments found in online databases. From the EMBL-
Align database [14] we used an alignment of 16S rRNA
genes [2] mainly from Microsporidia, and from the HIV se-
quence database [1] we used a large alignment of HIV and
SIVcpz sequences. We also used two amino acid alignments
found in the Pfam [7] database which are identified by their
Pfam-id in Table 4. In all experiments we used unparal-
lelised implementations for computing K2P and Kimura cor-
rected distances. The GPU implementation was not used in
these experiments as the performance is similar performance
to that of the vectorised implementation.

In Table 5 the running times for 1000 bootstrapping oper-
ations using neighbour-joining are shown. The Phylip tool
uses a standard implementation of the neighbour-joining
method while both the naive and vectorised implementa-
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Table 4: Running times for computing distance estimators from biological data and the minimum speedup
achieved by the vectorised implementation.

Dataset n l Phylip Naive Vectorised Speedup
16S (DNA) 338 1884 9, 19s 0, 7s 0, 09s x7.8
HIV (DNA) 1257 11848 20m 14s 37, 97s 1, 87s x20.3
PF00722.13 (protein) 1053 1470 2, 83s 2, 48s 0, 54s 4.6x
PF01370.13 (protein) 10338 1793 4m 58s 4m 28s 57, 91s 4.3x

Table 5: Running times when bootstrapping biolog-
ical data and the speedup of the vectorised imple-
mentation compared to the naive implementation.

Dataset Phylip Naive Vec. Speedup
HIV >24h 16h 16m 31m 25s 31,1x
PF00722.13 3h 11m 40m 3s 5m 20s 7,5x

tions use RapidNJ [17] to speed up phylogenetic reconstruc-
tion. The Phylip tool spends 76% of the total running
time on reconstructing phylogenies when bootstrapping the
PF00722.13 dataset compared to 10% in the naive imple-
mentation where RapidNJ is used. Clearly, the bottleneck
in the naive implementation is the computation of distance
estimators.
From the results in Tables 4 and 5 it is evident that

vectorisation have a significant impact on the time required
to compute distance estimators and hereby the reconstruc-
tion of phylogenetic trees. In particular the time required
to perform a large number of bootstrapping evaluations is
reduced from hours to minutes.

5. CONCLUSION
We have presented methods for computing the number

of substitutions between aligned nucleotide and amino acid
sequences which extends the work in [4] by handling gaps,
amino acid sequences and parallelisation of the workload on
both CPUs and GPUs. Our experiments showed that vec-
torisation of code gave a significantly higher performance in-
crease than parallelisation of the naive approach on a CPU.
When the code was both vectorised and parallelised on a
CPU with 4 cores the performance was equal to that of
an efficient implementation running on a comparable GPU.
The methods presented here significantly reduce the time
required to compute distance estimators using e.g. the K2P
model and the Kimura distance and hence reduce the total
time required to reconstruct phylogenetic trees using dis-
tance based methods.
The most time consuming step in reconstruction of phy-

logenies remains the computation of multiple alignments.
Still, minimising the time spend on reconstructing phylo-
genies from a multiple alignment is important as it allows
e.g. fast bootstrapping and fast analysis of readily available
alignments.
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