
Hidden Markov Models
Implementing the forward-, backward- and Viterbi-algorithms

Christian Nørgaard Storm Pedersen

cstorm@birc.au.dk

1/32ML E2020 / CNSP

Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward

2/32ML E2020 / CNSP

Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward

Problem: The values in the ω-, α-, and β-tables can come very
close to zero, by multiplying them we potentially exceed the
precision of double precision floating points and get underflow

3/32ML E2020 / CNSP

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

The Viterbi algorithm

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

Computing ω takes time O(K2N) and

space O(KN) using memorization

4/32ML E2020 / CNSP

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

The Viterbi algorithm

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

Computing ω takes time O(K2N) and

space O(KN) using memorization

Solution to underflow-problem: Because log max f = max log f, we
can “log-transform” which turns multiplications into additions and thus
avoids too small values

5/32ML E2020 / CNSP

The Viterbi algorithm in “log-space”

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

6/32ML E2020 / CNSP

Recursion:

Basis:

The Viterbi algorithm in “log-space”

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

n

k

ω^[k][n] = ω^(z
n
) if z

n
is state k

1 N

7/32ML E2020 / CNSP

The Viterbi algorithm in “log-space”

What if p(xn|zn) or p(zn|zn-1) is 0? Then the product of probabilities
becomes 0, but what should it be with log-transform?

8/32ML E2020 / CNSP

The Viterbi algorithm in “log-space”

“log 0” should be some representation of “minus infinity”

// Pseudo code for computing ω^[k][n] for some n>1

ω^[k][n] = “minus infinity”

for j = 1 to K:

ω^[k][n] = max(ω^[k][n], log(p(x[n] | k)) + ω^[j][n-1] + log(p(k | j)))

9/32ML E2020 / CNSP

What if p(xn|zn) or p(zn|zn-1) is 0? Then the product of probabilities
becomes 0, but what should it be with log-transform?

The Viterbi algorithm in “log-space”

“log 0” should be some representation of “minus infinity”

What if p(xn|zn) or p(zn|zn-1) is 0? Then the product of probabilities
becomes 0, but what should it be in “log-space”?Still takes time O(K2N) and space O(KN) using memorization, and the

most likely sequence of states can be found be backtracking

// Pseudo code for computing ω^[k][n] for some n>1

ω[k][n] = “minus infinity”

for j = 1 to K:

ω^[k][n] = max(ω^[k][n], log(p(x[n] | k)) + ω^[j][n-1] + log(p(k | j)))

10/32ML E2020 / CNSP

Backtracking

Takes time O(NK) but requires the entire ω- or ω^-table in memory

Pseudocode for backtracking not using log-space:

Pseudocode for backtracking using log-space:

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 (p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k))

print z[1..N]

z[1..N] = undef

z[N] = arg max
k
 ω^[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 (log p(x[n+1] | z[n+1]) + ω^[k][n] + log p(z[n+1] | k))

print z[1..N]

11/32ML E2020 / CNSP

Why “log-space” helps

A floating point number n is represented as n = f * 2e cf. the IEEE-754
standard which specify the range of f and e

See e.g. Appendix B in Tanenbaum's Structured Computer
Organization for further details.

12/32ML E2020 / CNSP

Why “log-space” helps

A: .5
B: .5

1

A simple HMM

The Viterbi-recursion for the HMM below yields:

13/32ML E2020 / CNSP

Why “log-space” helps

The Viterbi-recursion for the HMM below yields:

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

A: .5
B: .5

1

A simple HMM

14/32ML E2020 / CNSP

Why “log-space” helps

A: .5
B: .5

1

A simpel HMM

The Viterbi-recursion for the HMM below yields:

The log-transformed Viterbi-recursion for the HMM below yields:

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

No problem, as the decimal range is
approx -10308 to 10308

A: .5
B: .5

1

A simple HMM

15/32ML E2020 / CNSP

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n
is state k

1 N
Takes time O(K2N) and space O(KN) using
memorization

16/32ML E2020 / CNSP

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n
is state k

1 N
Takes time O(K2N) and space O(KN) using
memorization

Solution to underflow-problem: Since log (Σ f) ≠ Σ (log f), we
cannot (immediately) use the log-transform trick.

17/32ML E2020 / CNSP

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n
is state k

1 N
Takes time O(K2N) and space O(KN) using
memorization

Solution to underflow-problem: Since log (Σ f) ≠ Σ (log f), we
cannot (immediately) use the log-transform trick.

We instead use scaling such that values do not (all) become too small

18/32ML E2020 / CNSP

Forward algorithm using scaled values

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

19/32ML E2020 / CNSP

Forward algorithm using scaled values

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

This “normalized version” of α(z
n
), α^(z

n
), is a probability distribution

over K outcomes. We expect it to “behave numerically well” because

The normalized values can not all
become arbitrary small ...

20/32ML E2020 / CNSP

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

21/32ML E2020 / CNSP

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

If we know c
n
 then we have a recursion

using the normalized values

22/32ML E2020 / CNSP

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

If we know c
n
 then we have a recursion

using the normalized values

23/32ML E2020 / CNSP

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

In step n compute and store temporarily the K values δ(z
n1

), ..., δ(z
nK

)

Compute and store c
n
as

Compute and store

Recursion:

24/32ML E2020 / CNSP

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

In step n compute and store temporarily the K values δ(z
n1

), ..., δ(z
nK

)

Compute and store c
n
as

Compute and store

Recursion:

Basis:

25/32ML E2020 / CNSP

...

n

k

1 N

c
1

c
n

α^[k][n] = α^(z
n
) if z

n
is state k

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

In step n compute and store temporarily the K values δ(z
n1

), ..., δ(z
nK

)

Compute and store c
n
as

Compute and store

Recursion:

Basis:

Takes time O(K2N) and space
O(KN) using memorization

26/32ML E2020 / CNSP

...

n

k

1 N

c
1

c
n

α^[k][n] = α^(z
n
) if z

n
is state k

The Backward Algorithm

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

Recursion:

Basis:

Takes time O(K2N) and space O(KN) using memorization

27/32ML E2020 / CNSP

Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values

28/32ML E2020 / CNSP

Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values

In step n compute and store temporarily the K values ε(z
n1

), ..., ε(z
nK

)

Using c
n+1

computed during the forward-recursion, compute and store

Recursion:

Basis:

n

k

1 N

β^[k][n] = β^(z
n
) if z

n
is state k

Takes time O(K2N) and space
O(KN) using memorization

29/32ML E2020 / CNSP

Posterior decoding - Revisited

Given X, find Z*, where

 is the most likely state to be in the n'th step.

30/32ML E2020 / CNSP

Posterior decoding - Revisited

Given X, find Z*, where

 is the most likely state to be in the n'th step.

31/32ML E2020 / CNSP

Summary

 Implementing the Viterbi- and Posterior
decoding in a “numerically” sound manner.

 Next: How to “build” an HMM, i.e. determining
the number of observables (D), the number of
hidden states (K) and the transition- and
emission-probabilities.

32/32ML E2020 / CNSP

	Lecture Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Summary

