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Recursion:
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Problem: The values in the ω-, α-, and β-tables can come very 
close to zero, by multiplying them we potentially exceed the 
precision of double precision floating points and get underflow
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Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 

The Viterbi algorithm

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

Computing ω takes time O(K2N) and 

space O(KN) using memorization
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ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

Computing ω takes time O(K2N) and 

space O(KN) using memorization

Solution to underflow-problem: Because log max f = max log f, we 
can “log-transform” which turns multiplications into additions and thus 
avoids too small values 
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The Viterbi algorithm in “log-space”
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Recursion:

Basis:

The Viterbi algorithm in “log-space”

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 

n

k

ω^[k][n] = ω^(z
n
) if z

n 
is state k 

1 N
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The Viterbi algorithm in “log-space”

What if p(xn|zn) or p(zn|zn-1) is 0?  Then the product of probabilities
becomes 0, but what should it be with log-transform?
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The Viterbi algorithm in “log-space”

“log 0” should be some representation of “minus infinity”

// Pseudo code for computing ω^[k][n] for some n>1

ω^[k][n] = “minus infinity”

for j = 1 to K:

ω^[k][n] = max( ω^[k][n], log(p(x[n] | k)) + ω^[ j ][n-1] + log(p( k | j)) )
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What if p(xn|zn) or p(zn|zn-1) is 0?  Then the product of probabilities
becomes 0, but what should it be with log-transform?



The Viterbi algorithm in “log-space”

“log 0” should be some representation of “minus infinity”

What if p(xn|zn) or p(zn|zn-1) is 0?  Then the product of probabilities
becomes 0, but what should it be in “log-space”?Still takes time O(K2N) and space O(KN) using memorization, and the 

most likely sequence of states can be found be backtracking 

// Pseudo code for computing ω^[k][n] for some n>1

ω[k][n] = “minus infinity”

for j = 1 to K:

ω^[k][n] = max( ω^[k][n], log(p(x[n] | k)) + ω^[ j ][n-1] + log(p( k | j)) )
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Backtracking

Takes time O(NK) but requires the entire ω- or ω^-table in memory 

Pseudocode for backtracking not using log-space:

Pseudocode for backtracking using log-space:

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 ( p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k ) )

print z[1..N]

z[1..N] = undef

z[N] = arg max
k
 ω^[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 ( log p(x[n+1] | z[n+1]) + ω^[k][n] + log p(z[n+1] | k ) )

print z[1..N]
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Why “log-space” helps

A floating point number n is represented as n = f * 2e cf. the IEEE-754 
standard which specify the range of f and e

See e.g. Appendix B in Tanenbaum's Structured Computer 
Organization for further details.
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Why “log-space” helps

A: .5
B: .5

1

A simple HMM

The Viterbi-recursion for the  HMM below yields:
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Why “log-space” helps

The Viterbi-recursion for the  HMM below yields:

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

A: .5
B: .5

1

A simple HMM
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Why “log-space” helps

A: .5
B: .5

1

A simpel HMM

The Viterbi-recursion for the  HMM below yields:

The log-transformed Viterbi-recursion for the  HMM below yields:

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

No problem, as the decimal range is 
approx -10308 to 10308

A: .5
B: .5

1

A simple HMM
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The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n 
is state k 

1 N
Takes time O(K2N) and space O(KN) using 
memorization
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The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n 
is state k 

1 N
Takes time O(K2N) and space O(KN) using 
memorization

Solution to underflow-problem: Since log (Σ f) ≠ Σ (log f), we 
cannot (immediately) use the log-transform trick.
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The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

n

k
α[k][n] = α(z

n
) if z

n 
is state k 

1 N
Takes time O(K2N) and space O(KN) using 
memorization

Solution to underflow-problem: Since log (Σ f) ≠ Σ (log f), we 
cannot (immediately) use the log-transform trick.

We instead use scaling such that values do not (all) become too small
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Forward algorithm using scaled values

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n
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Forward algorithm using scaled values

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

This “normalized version” of α(z
n
), α^(z

n
), is a probability distribution 

over K outcomes. We expect it to “behave numerically well” because

The normalized values can not all 
become arbitrary small ...
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Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values
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Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

If we know c
n
 then we have a recursion 

using the normalized values
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Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

If we know c
n
 then we have a recursion 

using the normalized values
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Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

In step n compute and store temporarily the K values δ(z
n1

), ..., δ(z
nK

)   

Compute and store c
n 
as

Compute and store

Recursion:
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Forward algorithm using scaled values
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Compute and store c
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Recursion:

Basis:
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k

1 N

c
1

c
n

α^[k][n] = α^(z
n
) if z

n 
is state k 



Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

In step n compute and store temporarily the K values δ(z
n1

), ..., δ(z
nK

)   

Compute and store c
n 
as

Compute and store

Recursion:

Basis:

Takes time O(K2N) and space 
O(KN) using memorization
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...

n

k

1 N

c
1

c
n

α^[k][n] = α^(z
n
) if z

n 
is state k 



The Backward Algorithm

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

Recursion:

Basis:

Takes time O(K2N) and space O(KN) using memorization
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Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values
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Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values

In step n compute and store temporarily the K values ε(z
n1

), ..., ε(z
nK

)   

Using c
n+1 

computed during the forward-recursion, compute and store

Recursion:

Basis:

n

k

1 N

β^[k][n] = β^(z
n
) if z

n 
is state k 

Takes time O(K2N) and space 
O(KN) using memorization
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Posterior decoding - Revisited

Given X, find Z*, where 

 is the most likely state to be in the n'th step.
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Posterior decoding - Revisited

Given X, find Z*, where 

 is the most likely state to be in the n'th step.
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Summary

 Implementing the Viterbi- and Posterior 
decoding in a “numerically” sound manner.

 Next: How to “build” an HMM, i.e. determining 
the number of observables (D), the number of 
hidden states (K) and the transition- and 
emission-probabilities.
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