FLOATING-POINT NUMBERS

In many calculations the range of numbers used is very large. For example, a
calculation in astronomy might involve the mass of the electron, 9 x 1072 grams,
and the mass of the sun, 2 x 10°* grams, a range exceeding 10%°. These numbers
couid be represented by

0000600000000000000000000000000000.0000000000000000000000000009
2000000000000006000000000000000000.0000000000000000000000000000

and all calculations could be carried out keeping 34 digits to the left of the
decimal point and 28 places to the right of it. Doing so would allow 62 significant
digits in the results. On a binary computer, multiple-precision arithmetic could be
used to provide enough significance. However, the mass of the sun is not even
known accurately to five significant digits, let alone 62, In fact few measure-
ments of any kind can (or need) be made accurately to 62 significant digits.
Although it would be possible to keep all intermediate results to 62 significant
digits and then throw away 50 or 60 of them before printing the final results,
doing this is wasteful of both CPU time and memory.

What is needed is a system for representing numbers in which the range of
expressible numbers is independent of the number of significant digits. In this
appendix, such a system will be discussed. It is based on the scientific notation
commeonly used in physics, chemistry, and engineering.

692 FLOATING-POINT NUMBERS

B.1 PRINCIPLES OF FLOATING POINT

One way of separating the range from the precision is to express numbers in
the familiar scientific notation

n=fx10¢

where fis called the fraction, or mantissa, and e is a positive or negative integer
called the exponent. The computer version of this notation is called floating
point. Some examples of numbers expressed in this form are

3.14 =0314 x10! =314 x10¢
0.000001 =0.1 x10™° =10 x10°
1941 =0.1941 x 10% =1.941x% 103

The range is effectively determined by the number of digits in the exponent and
the precision is determined by the number of digits in the fraction. Because there
is more than one way to represent a given number, one form is usually chosen as
the standard. In order to investigate the properties of this method of representing
numbers, consider a representation, R, with a signed three-digit fraction in the
range 0.1 $if] < 1 or zero and a signed two-digit exponent. These numbers range
in magnitude from +0.100 x 1079 10 +0.999 x 107, a span of nearly 199 orders
of magnitude, yet only five digits and two signs are needed to store a number.

Floating-point numbers can be used to model the real-number system of
mathematics, although there are some important differences. Figure B-1 gives a
grossly exaggerated schematic of the real number line. The real line is divided up
into seven regions:

1. Large negative numbers less than —0.999 x 10°°.
Negative numbers between —0.999 x 10 and ~0.100 x 107°,

Small negative numbers with magnitudes less than 0.100 x 1077,

Zero,

Small positive numbers with magnitudes less than 0.100 x 1072,

Positive numbers between 0.100 x 107 and 0.999 x 10%°.

Large positive numbers greater than 0.999 x 10%,

One major difference between the set of numbers representable with three
fraction and two exponent digits and the real numbers is that the former cannot be
used to express any numbers in regions 1, 3, 5, or 7. If the result of an arithmetic
operation yields a number in regions 1 or 7—for example, 10%¢ x 100 = 1010
overflow error will occur and the answer will be incorrect. The reason is due 10
the finite nature of the representation for numbers and is unavoidable, Similarly,

SEC. B.1 PRINCIPLES OF FLOATING POINT 693

3 5
Negative Positive
underflow underfiow
1 2 4 6 7
Negative Expressible Zero Expressible Positive
overflow negative numbers + positive numbers overflow
A p A . “ P A \ A .
.._....__.__._._..M;¢,, : : |l‘..‘...........}._...—_._._.
—1 099 o 0-“100 0 1 0-—100 1098

Figure B-1. The real number line can be divided into seven regions.

a result in regions 3 or 5 cannot be expressed either. This situation is called
underflow error. Underflow error is less serious than overflow error, because 0
is often a satisfactory approximation to numbers in regions 3 and 5. A bank bal-
ance of 107'%% dollars is hardly better than a bank balance of 0.

Another important difference between floating-point numbers and real
numbers is their density. Between any two real numbers, x and y, is another real
number, no matter how close x is to y. This property comes from the fact that for
any distinct real numbers, x and y, z = (x + y)/2 1s a real number between them.
The real numbers form a continuum.

Floating-point numbers, in contrast, do not form a continnum. Exactly
179,100 positive numbers can be expressed in the five-digit, two-sign system used
above, 179,100 negative numbers, and 0 (which can be expressed in many ways),
for a total of 358,201 numbers. Of the infinite number of real numbers between
~101% and +0.999 x 10%, only 358,201 of them can be specified by this nota-
tion. They are symbolized by the dots in Fig. B-1. It is quite possible for the
result of a calculation to be one of the other numbers, even though it is in region 2
or 6. For example, +0.100 x 103 divided by 3 cannot be expressed exactly in our
system of representation. If the result of a calculation cannot be expressed in the
number representation being used, the obvious thing to do is to use the nearest
number that can be expressed. This process is called rounding.

The spacing between adjacent expressible numbers is not constant throughout
region 2 or 6. The separation between +0.998 x 10?? and +0.999 x 10%° is vastly
more than the separation between +0.998 x 10% and +0.999 x 10°. However,
when the separation between a number and its successor is expressed as a percen-
tage of that number, there is no systematic variation throughout region 2 or 6. In
other words, the relative error introduced by rounding is approximately the same
for small numbers as large numbers.

Although the preceding discussion was in terms of a representation system
with a three-digit fraction and a two-digit exponent, the conclusions drawn are
valid for other representation systems as well. Changing the number of digits in
the fraction or exponent merely shifts the boundaries of regions 2 and 6 and
changes the number of expressible points in them. Increasing the number of digits
in the fraction increases the density of points and therefore improves the accuracy

094 FLOATING-PGINT NUMBERS APP. B

of approximations. Increasing the number of digits in the exponent increases the
size of regions 2 and 6 by shrinking regions 1, 3, 5, and 7. Figure B-2 shows the
approximate boundaries of region 6 for floating-point decimal numbers for vari-
ous sizes of fraction and exponent,

Digits in fraction | Digits in exponent | Lower bound | Upper bound
3 1 107" 10°

1 0—1 02 1 099
10—1002 10999

10“1{)(}02 1 09999

10713 10°

1 0—1 03 i 099
1 04 003 10999

10—10003 109999

17 10°

10—104 1 099
10»1004 10999

1 0—1 0004 i 09999
10-—1 009 1 0999
10—1019 1 0999

Qi |is | b jw i

-—t

WiWwIH | W R [= A W= WM

2]
<o

Figure B-2, The approximate lower and upper bounds of expressible {(unnor-
malized) floating-point decimal numbexrs.

A variation of this representation is used in computers. For efficiency,
exponentiation is to base 2, 4, 8, or 16 rather than 10, in which case the fraction
consists of a string of binary, base-4, octal, or hexadecimal digits. If the leftmost
of these digits is zero, all the digits can be shifted one place to the left and the
exponent decreased by 1, without changing the value of the number (barring
underflow). A fraction with a nonzero leftmost digit is said to be normalized.

Normalized numbers are generally preferable to unnormalized numbers,
because there is only one normalized form, whereas there are many unnormalized
forms. Examples of normalized floating-point numbers are given in Fig. B-3 for
two bases of exponentiation. In these examples a 16-bit fraction (including sign
bit)'and a 7-bit exponent using excess 64 notation are shown. The radix point is to
the left of the leftmost fraction bit—that is, to the right of the exponent.

B.2 IEEE FLOATING-POINT STANDARD 754

Until about 1980, each computer manufacturer had its own floating-point for-
mat. Needless to say, all were different. Worse yet, some of them actually did
arithmetic incorrectly because floating-point arithmetic has some subtleties not
obvious to the average hardware designer.

SEC. B.2 IEEE FLOATING-POINT STANDARD 754 695

Example 1: Exponentiaticn to the base 2
-2 a4 6 g8 o0 pei2 oH 516

T

Unnormelized: © 1010100 0 0 0 0 0 0 6 000011011 =27 (127 Re 12270 1% 270
L y

A ~16
Sign Excess 64 Fragtion is 1 x 2794 1 x 2712 +1 %27 = 432
+ exponentis +1 %2y 20
84 ~ 64 =20

" To normalize, shift the fraction left 11 bits and subtragt 11 from the exponent.

Normalized: © 1001001 1 1 01106 00000000020 22 (12w 2% tx 2
\"""W_J“'

-
Sign Excess 64 Fraction is 1 x 27! +1x27% +1x27%) =432
£ exponentis #1 %24 4 1x 28
73-64=9

Example 2: Exponentiation to the base 16

Unnhormalized: 0 1000101 0000 0000 000t 1011 =16° (1 x 163+ Bx 1674 = 432
Nyt Nt % ~
Sign Excess 64 Fractionis 1 x 16~ +Bx 16™
+ exponentis
69~ B4 =5

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the expenent.

Normalized: © 10060011 0O0O0T 1041 0000 0000 =16°{1 x 167+ Bx 167 =432
b e e 4

Sign Excess 64 Fractionis 1 x 167 + B x 1672
+ exponentis
67 -64=3

Figure B-3. Examples of normatized floating-point numbers,

To rectify this situation, in the late 1970s IEEE set up a cominittee (o stand-
ardize floating-point arithmetic. The goal was not only to permit floating-point
data to be exchanged among different computers but also to provide hardware
designers with a model known to be correct. The resulting work led to [EEE
Standard 754 (IEEE, 1985). Most CPUs these days (including the Intel, SPARC,
and JVM ones studied in this book) have floating-point instructions that conform
to the IEEE floating-point standard. Unlike many standards, which tend to be
wishy-washy compromises that please no one, this one is not bad, in large part
because it was primarily the work of one person, Berkeley math professor Wil-
liam Kahan. The standard will be described in the remainder of this section.

The standard defines three formats: single precision (32 bits), double preci-
sion (64 bits), and extended precision (80 bits). The extended-precision format is
intended to reduce roundoff errors. It is used primarily inside floating-point arith-
metic units, so we will not discuss it further. Both the single- and double-
precision formats use radix 2 for fractions and excess notation for exponents. The
formats are shown in Fig. B-4.

Both formats start with a sign bit for the number as a whole, 0 being positive
and 1 being negative. Next comes the exponent, using excess 127 for single

696 FLOATING-POINT NUMBERS APP. B

Bits 1 8 23
| I Fraction

b AN
Sign Exponent

(a)

Bits 1 11 52
Exponent Fraction

“\Sign

(b)

Figure B-4. TEEE floating-point formats. (a) Single precision. (b) Double precision.

precision and excess 1023 for double precision. The minimum (0) and maximum
(255 and 2047) exponents are not used for normalized numbers; they have special
uses described below. Finally, we have the fractions, 23 and 52 bits, respectively.

A normalized fraction begins with a binary point, followed by a 1 bit, and
then the rest of the fraction. Following a practice started on the PDP-11, the
authors of the standard realized that the leading 1 bit in the fraction does not have
to be stored, since it can just be assumed to be present. Consequently, the stan-
dard defines the fraction in a slightly different way than usual. it consists of an
imnplied 1 bit, an implied binary point, and then either 23 or 52 arbitrary bits. If all
23 or 52 fraction bits are Os, the fraction has the nomerical value 1.0; if all of them
are 1s, the fraction is numerically slightly less than 2.0. To avoid confusion with
a conventional fraction, the combination of the implied 1, the implied binary
point, and the 23 or 52 explicit bits is called a significand instead of a fraction or
mantissa. All normalized numbers have a significand, s, in the range 1 <5 < 2.

The numerical characteristics of the IEEE floating-point numbers are given in
Fig. B-5. As examples, consider the numbers 0.5, 1, and 1.5 in normalized
single-precision format. These are represented in hexadecimal as 3F000000,
3F800000, and 3FCO0000, respectively.

One of the traditional problems with floating-point numbers is how to deal
with underflow, overflow, and uninitialized numbers. The IEEE standard deals
with these problems explicitly, borrowing its approach in part from the CDC
6600. In addition to normalized numbers, the standard has four other numerical
types, described below and shown in Fig. B-6.

A problem arises when the result of a calculation has a magnitude smaller
than the smallest normalized floating-point number that can be represented in this
system. Previously, most hardware took one of two approaches: just set the result
to zero and continue, or cause a floating-point underflow trap. Neither of these is

— e e e

SEC. B.2

IEEE FLOATING-POINT STANDARD 754

ftem Single preevision Double precision
Bits in sign 1 1
Bits in exponent 8 11
Bits in fraction 23 52
Bits, total 32 64
Exponent system Excess 127 Excess 1023
Exponent range ~126 to +127 ~1022 to +1023
Smallest normalized number 2126 o1022
Largest normalized number approx. a7 approx. 21024
Decimal range approx. 107 10 10% APPTOX. 1073%8 15 10
Smallest denormalized number approx. 197 approx. 10724

Figure B-5. Characteristics of IEEE fHoaling-point numbers.

Normalized | 0 < Exp < Max Any bit pattern
Denormalized | £ 0 Any nonzero hit pattern
Zero |t 0 0
infinity | & 111...1 0
Not a number | £ 111...1 Any nonzero bit pattern
\Sign bit

Figure B-6. IEEE numerical types.

really satisfactory, so IEEE invented denormealized numbers. These numbers
have an exponent of 0 and a fraction given by the following 23 or 52 bits. The
implicit 1 bit to the left of the binary point rzow becomes a 0. Denormalized
numbers can be distinguished from normalized wones because the latter are not per-
mitted to have an exponent of 0.

The smallest normalized single precision number has a 1 as exponent and 0 as
fraction, and represents 1.0 X 27126 The largest denormalized number has a 0 as
exponent and all 1s in the fraction, and represents about 0.9999999 x 27126 which
is almost the same thing. One thing to note howwever, is that this number has only
23 bits of significance, versus 24 for all normali:zed numbers.

As calculations further decrease this result, the exponent stays put at 0, but the
first few bits of the fraction become zeros, weducing both the value and the
number of significant bits in the fraction. The smallest nonzero denormalized

698 FLOATING-POINT NUMBERS APP. B

number consists of a 1 in the rightmost bit, with the rest being 0. The exponent
represents 2-'2 and the fraction represents 272 so the value is 27°. This
scherme provides for a graceful underflow by giving up significance instead of
jumping to 0 when the result cannot be expressed as a normalized number,

Two zeros are present in this scheme, positive and negative, determined by
the sign bit. Both have an exponent of 0 and a fraction of 0. Here too, the bit to
the left of the binary point is implicitly O rather than 1.

Owerflow cannot be handled gracefully. There are no bit combinations left.
Instead, a special representation is provided for infinity, consisting of an exponent
with all 1s (not allowed for normalized numbers), and a fraction of 0. This
number can be used as an operand and behaves according to the usual mathemati-
cal rudes for infinity. For example infinity plus anything is infinity, and any finite
number divided by infinity is zero. Similarly, any finite number divided by zero
yields infinity.

Wrhat about infinity divided by infinity? The result is undefined. To handle
this case, another special format is provided, called NaN (Not a Number). It too,
can be used as an operand with predictable results.

PROBLEMS

1. Convert the following numbers to IEEE single-precision format, Give the results as
eight hexadecimal digits.

a.9

. 5/32
c. ~5/32
d. 6,125

2. Convert the following IEEE single-precision floating-point numbers from hex to
decimal:

a. 42B48000H
b 3FBROO0OH
¢. 00800000H
d. C7FO0000H

3. The format of single-precision floating-point numbers on the 370 has a 7-bit exponent
in the excess 64 system, and a fraction containing 24 bits plus a sign bit, with the
binary point at the left end of the fraction. The radix for exponentiation is 16. The
oxder of the fields is sign bit, exponent, fraction. Express the number 7/64 as a nor-
malized number in this system in hex.

4, The following binary floating-point numbers consist of a sign bit, an excess 64, radix
2 exponent, and a 16-bit fraction. Normalize them.

a. 0 1000000 0001010100000001

APP.

0 owd DO LA®o— g W

T =2

=

[Bl & o}

o

L S

AN e

ient
“his
Cof

by
{10

eft,
1end
“his
ati-
nite
ET0

dle
{00,

5 as

X Lo

nent
1 the
The
nos-

‘adix

APP. B PROBI.EMS 699

10

b. G 0111111 0000001111111111L
¢. 0 1000011 1000000000000000

- To add two floating-point numbers, you must adjust the exponents (by shifting the

fraction} to make them the same. Then you can add the fractions and normalize the
result, if need be. Add the single-precision IEEE numbers 3EEQ0000H and
3D800000H and express the normalized result in hexadecimal,

The Tightwad Computer Company has decided to come out with a machine having
16-bit floating-point numbers. The Model 0.001 has a floating-point format with a
sign bit, 7-bit, excess 64 exponent, and 8-bit fraction. The Model 0,002 has a sign bit,
5-bit, excess 16 exponent, and 10-bit fraction. Both use radix 2 exponentiation. What
are the smallest and largest positive normalized numbers on both models? About how
many decimal digits of precision does each have? Would you buy either one?

There is one situation in which an operation on two floating-point numbers can cause
a drastic reduction in the number of significant bits in the result. What is it?

Some floating-point chips have a square root instruction built in. A possible algorithm
is an iterative one (e.g., Newton-Raphson). Iterative algorithms need an initial
approximation and then steadily improve it. How can one obtain a fast approximate
square root of a floating-point number?

. Write a procedure to add two IBEE single-precision floating-point numbers. Each

number is represented by a 32-element Boolean array,

Write a procedure to add two single-precision floating-point numbers that use radix 16
for the exponent and radix 2 for the fraction but do not have an implied 1 bit to the left
of the binary point. A normalized number has 0001, 0010, ..., 1111 as the leftmost 4
bits of the fraction, but not 0000. A number is normalized by shifting the fraction left
4 bits and subfracting 1 from the exponent.

