Exam project for Applied Programming 2011:
Truncated coding reading frames.

Imagine that you suspect that a type of cancer is caused by/correlated with the
malfunctioning of one of a number of candidate genes. Your hypothesis is that the
protein product of a gene is truncated as a result of a somatic mutation introducing a
stop codon (TGA, TAG or TAA). You want to screen for such truncated proteins in
samples of cancer cells. To do this you need to know which truncated products to
screen for. The task at hand is to write code that lets you identify at what positions in
the coding reading frame (CDS) of each gene that a single somatic mutation may
introduce a stop codon. Having done this you would also like some general statistics
across all analyzed genes about the codons you identify.

Along with this assignment there is also a file (EksamensOpgaveAP2011inputData.py)
with example input data that can be downloaded from where you also found this file.

Problem 1:

The first task is to parse the CDS annotation for a sequence so we know which parts
code for protein.

Write a function

def parseAnnotation (annotation):

that takes a string annotation as argument. This string describes the location of the
CDS in the sequence in the following manner (start..end),(start..end) etc. E.g. the string
'(459..521), (1834..2736) ' specifies that the CDS is distributed in two exons
with one part from base number 459 to base number 521 (both inclusive) and the
remaining part from base number 1834 to base number 2736 (both inclusive). The
function must return a list with a tuple for each CDS part, each with a start and end
value.

Example usage:
parseAnnotation (' (459..521), (1834..2736)")

should return
[ (459, 521), (1834, 2736)]

Problem 2:
Next thing is to extract the CDS from the sequence.

Write a function

def cutoutCDS (seq, annotation):



that takes a string seq containing a DNA sequence and a string annotation
containing an annotation string. The function must return a string containing the CDS
sequence.

Problem 3:
To analyze CDSs we need to be able to evaluate the differences between two codons.

Write a function:

def differencesBetweenCodons (codonl, codon2?) :

that takes two string arguments, codonl and codon?2, each containing a codon (three
nucleotides). The function must return a list of length three of zeros and ones. Each
element in this list must indicate if the two codons are different at that position. That is, if
the first bases in each codon are different the first element in the list is 1 if they are the
same it must be 0.

Example usage:
differencesBetweenCodons ("TAG", "GAT")

should return
[1,0,1]

because the first and the last nucleotides differ.

Problem 4:

Now that we can locate the differences between two codons, we can go on to
implement a function that computes how close a codon is to being a stop codon. The
function we need should return the stop codon that has the fewest differences to codon
but also information about how much they are different and how they are different.

Write a function:
def differencesToStopCodon (codon) :

that takes a string of three characters codon as argument. The function must return
three values in the following order: a string containing the stop codon that codon is
most similar to, an integer containing the number of differences between codon and the
returned stop codon, and a list with three zeros or ones (as described in problem 3)
representing at which positions codon differs from the returned stop codon.

Example usage:
differencesToStopCodon ("GAA")



should return
("TAA", 1, [1,0,01])

Problem 5:

Next step is to identify all positions in the CDS (except of cause the stop codon) where
one mutation may turn a codon into a stop codon

Write a function

def findPotentialStopCodons (cds) :

that takes a string argument cds containing a CDS sequence. The function must search
all non-overlapping codons and return a list of tuples with a tuple for each codon that
may mutate into a stop codon. Each tuple must contain: a codon that may mutate into a
stop codon, the stop codon this would mutate into, and the base number in the CDS
where a mutation will cause this change.

Example usage:
findPotentialStopCodons ('ATGCAATGTTAA'")

should return
[('CAA', 'TAA', 4), ('TGT', 'TGA', 9)]

Now that you can find potential stop codons you can easily compute the resulting
truncated proteins. We did this in the course so we don’t need to to take that any further
here.

Problem 6:

Lets say you have analyzed a number of genes using the code you have written. In
addition to finding out where potential stop codons may be introduced in each particular
CDSs, you are also interested in whether there are any general trends in how stop
codons may be introduced. To be able to summarize your results for multiple CDSs you
must store the results for all the genes you analyze in a single data structure.

You must use a dictionary of dictionaries for this purpose. Do this in a way so that you
can access a list of all observed base positions where a stopcodon has mutated from

a codon in this way: d [stopcodon] [codon]. To do this you must write a function that
adds the information returned by findPotentialStopCodons to such a dictionary.

Write a function

def addToMutationDictionary(d, tup):

that takes a dictionary argument d and a tuple argument tup.



The dictionary d may be empty or may already contain data as described above. As
explained in problem 5, the tuple tup contains the codon, the potential stop codon, and
an integer describing a base position in the CDS where a mutation will cause the
change. The function must add the data in tup to the data structure d. The function
must not return anything (other than None of course).

Problem 7:

Now you must produce a summarized account of all your observations across all CDSs.
Calculate the frequencies of the codons you have observed may mutate into a stop
codon. You must group your observations by stop codon so that frequencies for each
stop codon sum to one.

Write a function:

def printStatistics(cdsList) :

that takes a list argument cdsList containing CDS sequences. The function should
print a summary of the codons observed as described above. The output must be
formatted exactly as in the example below with one tab for indentation and two decimals

on the frequencies.

Example usage:

printStatistics (["ATGCAAAAGTAA', 'ATGTGCAGATGA'])
should print:
TAG:
AAG: 1.00
TGA :
TGG: 0.50
AGA: 0.50
TAA:
CAA: 1.00
Problem 8:

Now that you can compute the CDS positions where mutations may introduce stop
codons you also need to be able to find the corresponding positions in the un-spliced
sequence with introns included.

Write a function

def convertToSequenceCoordinates (pos, annotation):



that takes an integer argument pos containing the CDS base position and a string
argument annotation that contains CDS annotation for the sequence. The function

must return the position in the un-spliced sequence corresponding to the CDS position
given as argument.



